66 research outputs found

    Causality and replication in concurrent processes

    Get PDF
    The replication operator was introduced by Milner for obtaining a simplified description of recursive processes. The standard interleaving semantics denotes the replication of a process P, written !P, a shorthand for its unbound parallel composition, operationally equivalent to the process P | P | …, with P repeated as many times as needed. Albeit the replication mechanism has become increasingly popular, investigations on its causal semantics has been scarce. In fact, the correspondence between replication and unbound parallelism makes it difficult to recover basic properties usually associated with these semantics, such as the so-called concurrency diamond. In this paper we consider the interleaving semantics for the operator proposed by Sangiorgi and Walker, and we show how to refine it in order to capture causality. Furthermore, we prove it coincident with the standard causal semantics for recursive process studied in the literature, for processes defined by means of constant invocations

    A symbolic algorithm for the synthesis of bounded Petri nets

    Get PDF
    This paper presents an algorithm for the synthesis of bounded Petri nets from transition systems. A bounded Petri net is always provided in case it exists. Otherwise, the events are split into several transitions to guarantee the synthesis of a Petri net with bisimilar behavior. The algorithm uses symbolic representations of multisets of states to efficiently generate all the minimal regions. The algorithm has been implemented in a tool. Experimental results show a significant net reduction when compared with approaches for the synthesis of safe Petri nets.Peer ReviewedPostprint (author's final draft

    Distributed Supervisory Control of Discrete-Event Systems with Communication Delay

    Full text link
    This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents

    Reversing Steps in Petri Nets

    Get PDF
    In reversible computations one is interested in the development of mechanisms allowing to undo the effects of executed actions. The past research has been concerned mainly with reversing single actions. In this paper, we consider the problem of reversing the effect of the execution of groups of actions (steps). Using Petri nets as a system model, we introduce concepts related to this new scenario, generalising notions used in the single action case. We then present a number of properties which arise in the context of reversing of steps of executed transitions in place/transition nets. We obtain both positive and negative results, showing that dealing with steps makes reversibility more involved than in the sequential case. In particular, we demonstrate that there is a crucial difference between reversing steps which are sets and those which are true multisets

    Verification of Logs - Revealing Faulty Processes of a Medical Laboratory

    Full text link
    Abstract. If there is a suspicion of Lyme disease, a blood sample of a patient is sent to a medical laboratory. The laboratory performs a number of dierent blood examinations testing for antibodies against the Lyme disease bacteria. The total number of dierent examinations depends on the intermediate results of the blood count. The costs of each examination is paid by the health insurance company of the patient. To control and restrict the number of performed examinations the health insurance companies provide a charges regulation document. If a health insurance company disagrees with the charges of a laboratory it is the job of the public prosecution service to validate the charges according to the regulation document. In this paper we present a case study showing a systematic approach to reveal faulty processes of a medical laboratory. First, files produced by the information system of the respective laboratory are analysed and consolidated in a database. An excerpt from this database is translated into an event log describing a sequential language of events performed by the information system. With the help of the regulation document this language can be split in two sets- the set of valid and the set of faulty words. In a next step, we build a coloured Petri net model corre-sponding to the set of valid words in a sense that only the valid words are executable in the Petri net model. In a last step we translated the coloured Petri net into a PL/SQL-program. This program can automat-ically reveal all faulty processes stored in the database.

    Modeling the Value Chain with Object-Valued Petri Nets

    No full text
    corecore